class Sub

Subroutine
class Sub is Routine { }

A type for subroutines and operators. Subs are created with the sub declarator keyword followed by an optional identifier. This short tutorial explains how operators are declared. For details of a sub's parameter list, see Signature.

Note that subs that go by the same name as coercers will not take precedence over them. Use the &-sigil to call them.

sub Int(Str $s){'what?'};
    say [Int, Int('42'),&Int('42')];
    # OUTPUT: «[(Int) 42 what?]␤»

Subs can be nested and scoped with my and our, whereby my is the default. A sub declared with my cannot be reached from any outer scope. An our scoped sub will not redefine a sub of the same name in the outer scope. Any sub can be accessed via a closure from any outer scope. For instance, in this example

sub can-be-seener( $whatever ) {
      my sub can-be-seen ( $objection ) {
        return $whatever but $objection;
      }
      return &can-be-seen
    }
my $objectioner = can-be-seener( "Really?");
    say $objectioner(42).Int; # OUTPUT: «42␤»

$objectioner will contain the can-be-seen subroutine, even if it has been declared in another scope; calling it with 42 will return "Really?" with the number 42 mixed in, as shown in the last sentence.

Operators

Operators are also Subs. Their definition includes the category they belong to and their code, precedence and associativity. The syntax used in their definition is an example of extended identifiers.

Traits

A Trait is a sub that is applied at compile time to various objects like classes, routines or containers. It is declared with the trait_mod declarator followed by a colon and a string literal containing the name of the trait. A single positional parameter defines the type of the object that the trait is applied to. A single named argument defines the secondary name and may carry arguments when the trait is called. Traits are a special grammar category and are allowed to be placed after most language object names or parameter lists.

say 'start';
    multi trait_mod:<is>(Sub $s, :$foo){
        say "⟨is foo⟩ has been called with ⟨$foo⟩ on {$s.WHICH}";
    }
    sub bar() is foo<oi‽> {
        say 'bar has been called'
    }
    bar();
    # OUTPUT: «⟨is foo⟩ has been called with ⟨oi‽⟩ on Sub|47563000␤start␤bar has been called␤»

Use destructuring to call traits with complex arguments.

multi trait_mod:<is>(Variable $a, :@foo [$firstpos, *@restpos, :$named, *%restnameds]) {
        say [$firstpos, @restpos, $named, %restnameds]
    }
    my $x is foo[1,2,3,:named<a>, :2b, :3c] = 1
    # OUTPUT: «[1 [2 3] a {b => 2, c => 3}]␤»

Despite its funky syntax, a trait is just a normal Sub. We can apply traits to it (or even themselves) and we can apply traits to objects at runtime.

multi trait_mod:<is> (Sub $s, :$foo) is foo {
        say 'is foo called'
    }
    sub bar {}
    &trait_mod:<is>(&bar, :foo);
    # OUTPUT: «is foo called␤is foo called␤»

See Also

class int

Native integer

class Allomorph

Dual value number and string

class Any

Thing/object

class AST

Abstract representation of a piece of source code

class atomicint

Integer (native storage at the platform's atomic operation size)

class Block

Code object with its own lexical scope

class CallFrame

Captures the current frame state

class Code

Code object

class Collation

Encapsulates instructions about how strings should be sorted

class Compiler

Information related to the compiler that is being used

class Complex

Complex number

class ComplexStr

Dual value complex number and string

class Cool

Object that can be treated as both a string and number

class CurrentThreadScheduler

Scheduler that synchronously executes code on the current thread

class Date

Calendar date

class DateTime

Calendar date with time

class Distribution::Hash

Distribution::Hash

class Distribution::Locally

Distribution::Locally

class Distribution::Path

Distribution::Path

class Distribution::Resource

Every one of the resources installed with a distribution

class Duration

Length of time

class Encoding::Registry

Management of available encodings

class FatRat

Rational number (arbitrary-precision)

class ForeignCode

Rakudo-specific class that wraps around code in other languages (generally NQP)

class Format

Convert values to a string given a format specification

class Formatter

Produce Callable for given format specification

class HyperSeq

An object for performing batches of work in parallel with ordered output

class HyperWhatever

Placeholder for multiple unspecified values/arguments

class Instant

Specific moment in time

class Int

Integer (arbitrary-precision)

class IntStr

Dual value integer and string

class Junction

Logical superposition of values

class Label

Tagged location in the source code

class Lock::Async

A non-blocking, non-re-entrant, mutual exclusion lock

class Macro

Compile-time routine

class Method

Member function

class Mu

The root of the Raku type hierarchy.

class Nil

Absence of a value or a benign failure

class Num

Floating-point number

role Numeric

Number or object that can act as a number

class NumStr

Dual value floating-point number and string

class ObjAt

Unique identification for an object

class Parameter

Element of a Signature

class Perl

Perl related information

class Proxy

Item container with custom storage and retrieval

class RaceSeq

Performs batches of work in parallel without respecting original order.

class Raku

Raku related information

package RakuAST

Namespace for holding RakuAST related classes

class RakuAST::Doc::Block

Contains the information of a RakuDoc block

class RakuAST::Doc::Declarator

Contains the declarator docs of a RakuAST object

class RakuAST::Doc::Markup

Contains the information about RakuDoc markup

class RakuAST::Doc::Paragraph

Contains the information about a RakuDoc paragraph

class Rat

Rational number (limited-precision)

class RatStr

Dual value rational number and string

class Routine

Code object with its own lexical scope and return handling

class Routine::WrapHandle

Holds all information needed to unwrap a wrapped routine.

class Scalar

A mostly transparent container used for indirections

class Signature

Parameter list pattern

class Str

String of characters

class StrDistance

Contains the result of a string transformation.

class Submethod

Member function that is not inherited by subclasses

class Telemetry

Collect performance state for analysis

class Telemetry::Instrument::Thread

Instrument for collecting Thread data

class Telemetry::Instrument::ThreadPool

Instrument for collecting ThreadPoolScheduler data

class Telemetry::Instrument::Usage

Instrument for collecting getrusage data

class Telemetry::Period

Performance data over a period

class Telemetry::Sampler

Telemetry instrument pod

Subset UInt

Unsigned integer (arbitrary-precision)

class ValueObjAt

Unique identification for value types

class Variable

Object representation of a variable for use in traits

class Version

Module version descriptor

class Whatever

Placeholder for the value of an unspecified argument

class WhateverCode

Code object constructed by Whatever-priming

The Camelia image is copyright 2009 by Larry Wall. "Raku" is trademark of the Yet Another Society. All rights reserved.