class Complex
class Complex is Cool does Numeric {}
Represents a number in the complex plane.
Complex objects are immutable.
Operators
postfix i
Adding a trailing i
to a number literal makes it a Complex, for example:
say 2i; # same as Complex.new(0, 2);
say 1-2e3i; # same as Complex.new(1, -2e3);
Methods
method new
multi method new(Real $re, Real $im --> Complex:D)
Creates a new Complex
object from real and imaginary parts.
my $complex = Complex.new(1, 1);
say $complex; # OUTPUT: «1+1i»
When created without arguments, both parts are considered to be zero.
say Complex.new; # OUTPUT: «0+0i»
method re
method re(Complex:D: --> Real:D)
Returns the real part of the complex number.
say (3+5i).re; # OUTPUT: «3»
method im
method im(Complex:D: --> Real:D)
Returns the imaginary part of the complex number.
say (3+5i).im; # OUTPUT: «5»
method reals
method reals(Complex:D: --> Positional:D)
Returns a two-element list containing the real and imaginary parts for this value.
say (3+5i).reals; # OUTPUT: «(3 5)»
method isNaN
method isNaN(Complex:D: --> Bool:D)
Returns true if the real or imaginary part is NaN (not a number).
say (NaN+5i).isNaN; # OUTPUT: «True»
say (7+5i).isNaN; # OUTPUT: «False»
method polar
method polar(Complex:D: --> Positional:D)
Returns a two-element list of the polar coordinates for this value, i.e. magnitude and angle in radians.
say (10+7i).polar; # OUTPUT: «(12.2065556157337 0.610725964389209)»
method floor
method floor(Complex:D: --> Complex:D)
Returns self.re.floor + self.im.floor
. That is, each of the real and
imaginary parts is rounded to the highest integer not greater than
the value of that part.
say (1.2-3.8i).floor; # OUTPUT: «1-4i»
method ceiling
method ceiling(Complex:D: --> Complex:D)
Returns self.re.ceiling + self.im.ceiling
. That is, each of the real and
imaginary parts is rounded to the lowest integer not less than the value
of that part.
say (1.2-3.8i).ceiling; # OUTPUT: «2-3i»
routine sign
method sign(Complex:D: --> Complex:D)
multi sign(Complex:D $z --> Complex:D)
Returns 0i
if the absolute value of the complex number is 0. Otherwise
returns the complex number divided by its absolute value (the unit
complex number in the same direction as $z).
Available as of 6.e language version (early implementation exists in Rakudo compiler 2023.02+).
method round
multi method round(Complex:D: --> Complex:D)
multi method round(Complex:D: Real() $scale --> Complex:D)
With no arguments, rounds both the real and imaginary parts to the nearest
integer and returns a new Complex
number. If $scale
is given, rounds both
parts of the invocant to the nearest multiple of $scale
. Uses the same
algorithm as Real.round on each part of the number.
say (1.2-3.8i).round; # OUTPUT: «1-4i»
say (1.256-3.875i).round(0.1); # OUTPUT: «1.3-3.9i»
method truncate
method truncate(Complex:D: --> Complex:D)
Removes the fractional part of both the real and imaginary parts of the
number, using Real.truncate, and returns the result as a new Complex
.
say (1.2-3.8i).truncate; # OUTPUT: «1-3i»
routine abs
method abs(Complex:D: --> Num:D)
multi abs(Complex:D $z --> Num:D)
Returns the absolute value of the invocant (or the argument in sub form).
For a given complex number $z
the absolute value |$z|
is defined as
sqrt($z.re * $z.re + $z.im * $z.im)
.
say (3+4i).abs; # OUTPUT: «5»
# sqrt(3*3 + 4*4) == 5
method conj
method conj(Complex:D: --> Complex:D)
Returns the complex conjugate of the invocant (that is, the number with the sign of the imaginary part negated).
say (1-4i).conj; # OUTPUT: «1+4i»
method sqrt
method sqrt(Complex:D: --> Complex:D)
Returns the complex square root of the invocant, i.e. the root where the real part is ≥ 0 and the imaginary part has the same sign as the imaginary part of the invocant.
say (3-4i).sqrt; # OUTPUT: «2-1i»
say (-3+4i).sqrt; # OUTPUT: «1+2i»
method gist
method gist(Complex:D: --> Str:D)
Returns a string representation of the form "1+2i", without internal spaces. (Str coercion also returns this.)
say (1-4i).gist; # OUTPUT: «1-4i»
method raku
method raku(Complex:D: --> Str:D)
Returns an implementation-specific string that produces an equivalent object when given to EVAL.
say (1-3i).raku; # OUTPUT: «<1-3i>»
method Real
multi method Real(Complex:D: --> Num:D)
multi method Real(Complex:U: --> Num:D)
Coerces the invocant to Num. If the imaginary part isn't approximately zero, coercion fails with X::Numeric::Real.
The :D
variant returns the result of that coercion. The :U
variant issues
a warning about using an uninitialized value in numeric context and then returns value 0e0
.
sub infix:<**>
multi infix:<**>(Complex:D \a, Complex:D \b --> Complex:D)
multi infix:<**>(Num(Real) \a, Complex:D \b --> Complex:D)
multi infix:<**>(Complex:D \a, Num(Real) \b --> Complex:D)
The exponentiation operator coerces the second argument to Complex
and calculates the left-hand-side raised to the power of the right-hand side. Since 6.d,
either argument can be equal to zero.
say i ** i; # OUTPUT: «0.20787957635076193+0i»
say 2 ** i; # OUTPUT: «0.7692389013639721+0.6389612763136348i»
say i ** 2; # OUTPUT: «-1+1.2246467991473532e-16i»
say 0 ** i; # OUTPUT: «0+0i»
say 0i ** 0i; # OUTPUT: «1+0i»