Powerful digit counts

AUTHOR

polettix

https://projecteuler.net/problem=63

The 5-digit number, 16807=7^5, is also a fifth power. Similarly, the 9-digit number, 134217728=8^9, is a ninth power.

How many n-digit positive integers exist which are also an nth power?

use v6;



# As of August 24th, 2009 we don't have big integers, so we'll have
# to conjure up something. We'll represent each number with an
# array of digits, base 10-exp for ease of length computation. The most
# significant part is at the end of the array, i.e. the array should
# be read in reverse.
# Setting '1' for the number of digits means representing the base-10
# system with one digit in each array position.
my $digits = 5;
my $limit = 10 ** $digits;

my $count = 0;

# 9 is the maximum possible base for this problem. 9**22 has 21 digits
sub MAIN(Bool :$verbose = False) {
    for 1 .. 9 -> $x {
        my @x = (1);
        for 1 .. * -> $y {
            @x = multby(@x, $x);
            my $px = printable(@x);
            if ($px.encode('utf-8').bytes == $y) {
                say "$x ** $y = $px (", $px.encode('utf-8').bytes, ')'
                    if $verbose;
                $count++;
            }
            elsif ($px.encode('utf-8').bytes < $y) {
                last;
            }
        }
    }
    say $count;
}

sub printable (@x is copy) {
    my $msb = pop @x;
    return $msb ~ @x.reverse.map({sprintf '%0'~$digits~'d', $_ }).join('');
}

# Add a "number" to another, modifies first parameter in place.
# This assumes that length(@y) <= length(@x), which will be true in
# our program because @y is lower than @x
sub add (@x is copy, @y) {
    my $rest = 0;
    return add(@y, @x) if +@x < +@y;
    for @x Z (@y, 0, *) -> $x is rw, $y {
        $x += $y + $rest;
        $rest = int($x / $limit);
        $x %= $limit;
    }
    push @x, $rest if $rest;
    return @x;
}

sub multby (@x is copy, $y) {
    my $rest = 0;
    for @x -> $x is rw {
        $x = $x * $y + $rest;
        $rest = $x div $limit;
        $x %= $limit;
    }
    push @x, $rest if $rest;
    return @x;
}

# Not really needed...
sub mult (@x is copy, @y) {
    my @result = (0);
    for @y -> $y {
        my @addend = multby(@x, $y);
        @result = add(@result, @addend);
        @x.unshift(0);
    }
    return @result;
}

# vim: expandtab shiftwidth=4 ft=perl6

See Also

prob001-cspencer.pl

Multiples of 3 and 5

prob001-eric256.pl

Multiples of 3 and 5

prob001-grondilu.pl

Multiples of 3 and 5

prob001-hexmode.pl

Multiples of 3 and 5

prob001-unobe.pl

Multiples of 3 and 5

prob002-eric256.pl

Even Fibonacci numbers

prob002-gerdr.pl

Even Fibonacci numbers

prob002-hexmode.pl

Even Fibonacci numbers

prob003-eric256.pl

Largest prime factor

prob003-gerdr.pl

Largest prime factor

prob003-hexmode.pl

Largest prime factor

prob003-lanny.pl

Largest prime factor

prob004-unobe.pl

Largest palindrome product

prob004-xfix.pl

Largest palindrome product

prob005-unobe.pl

Smallest multiple

prob005-xfix.pl

Smallest multiple

prob006-polettix.pl

Sum square difference

prob007-polettix.pl

10001st prime

prob008-duff.pl

Largest product in a series

prob008-duff2.pl

Largest product in a series

prob009-gerdr-feeds.raku

Special Pythagorean triplet

prob009-gerdr.raku

Special Pythagorean triplet

prob009-polettix.pl

Special Pythagorean triplet

prob010-polettix.pl

Summation of primes

prob011-moritz.pl

Largest product in a grid

prob012-polettix.pl

Highly divisible triangular number

prob013-grondilu.pl

Large sum

prob014-felher.pl

Longest Collatz sequence

prob015-felher.pl

Lattice paths

prob016-grondilu.pl

Power digit sum

prob017-duff.pl

Number letter counts

prob018-felher.pl

Maximum path sum I

prob019-grondilu.pl

Counting Sundays

prob020-grondilu.pl

Factorial digit sum

prob021-gerdr.pl

Amicable numbers

prob022-grondilu.pl

Names scores

prob023-shlomif.pl

Non-abundant sums

prob024-moritz.pl

Lexicographic permutations

prob025-polettix.pl

1000-digit Fibonacci number

prob026-shlomif.pl

Reciprocal cycles

prob027-shlomif.pl

Quadratic primes

prob028-shlomif.pl

Number spiral diagonals

prob029-gerdr.pl

Distinct powers

prob029-polettix.pl

Distinct powers

prob031-shlomif.pl

Coin sums

prob033-andreoss.pl

Digit cancelling fractions

prob034-quinny.pl

Digit factorials

prob036-xenu.pl

Double-base palindromes

prob038-andreoss.pl

Pandigital multiples

prob039-quinny.pl

Integer right triangles

prob041-heyajulia-alternative.raku

Pandigital Prime

prob041-heyajulia.raku

Pandigital Prime

prob042-shlomif.p6

Coded triangle numbers

prob047-gerdr.pl

Distinct primes factors

prob052-duff.pl

Permuted multiples

prob053-duff.pl

Combinatoric selections

prob053-gerdr.pl

Combinatoric selections

prob054-andreoss.pl

Poker hands

prob055-shlomif.p6

Lychrel numbers

prob056-shlomif.p6

prob059-andreoss.pl

XOR decryption

prob063-moritz.pl

Powerful digit counts

prob065-andreoss.pl

Convergents of e

prob065-grondilu.pl

prob066-andreoss.pl

Diophantine equation

prob067-felher.pl

Maximum path sum II

prob080-andreoss.pl

Square root digital expansion

prob081-moritz.pl

Path sum: two ways

prob089-andreoss.pl

Roman numerals

prob092-moritz.pl

Square digit chains

prob097-andreoss.pl

Large non-Mersenne prime

prob098-andreoss.pl

Anagramic squares

prob099-andreoss.pl

Largest exponential

README.md

The Camelia image is copyright 2009 by Larry Wall. "Raku" is trademark of the Yet Another Society. All rights reserved.