WWW::MermaidInk

Get images corresponding to Mermaid-js specifications via the web Mermaid-ink interface of Mermaid-js.

WWW::MermaidInk Raku package

The function mermaid-ink of the Raku package "WWW::MermaidInk" gets images corresponding to Mermaid-js specifications via the web Mermaid-ink interface of Mermaid-js.

Usage

use WWW::MermaidInkloads the package.

mermaid-ink($spec)retrieves an image defined by the spec $spec from Mermaid's Ink Web interface.

mermaid-ink($spec format => 'md-image')returns a string that is a Markdown image specification in Base64 format.

mermaid-ink($spec file => fileName)exports the retrieved image into a specified PNG file.

mermaid-ink($spec file => Whatever)exports the retrieved image into the file $*CMD ~ /out.png.

Details & Options

  • Mermaid lets you create diagrams and visualizations using text and code.

  • Mermaid has different types of diagrams: Flowchart, Sequence Diagram, Class Diagram, State Diagram, Entity Relationship Diagram, User Journey, Gantt, Pie Chart, Requirement Diagram, and others. It is a JavaScript based diagramming and charting tool that renders Markdown-inspired text definitions to create and modify diagrams dynamically.

  • mermaid-ink uses the Mermaid's functionalities via the Web interface "https://mermaid.ink/img".

  • The first argument can be a string (that is, a mermaid-js specification) or a list of pairs.

  • The option "directives" can be used to control the layout of Mermaid diagrams if the first argument is a list of pairs.

  • mermaid-ink produces images only.

Examples

Basic Examples

Generate a flowchart from a Mermaid specification:

use WWW::MermaidInk;

'graph TD 
   WL --> |ZMQ|Python --> |ZMQ|WL' 
 ==> mermaid-ink(format=>'md-image')

image  not found

Create a Markdown image expression from a class diagram:

my $spec = q:to/END/;
classDiagram
    Animal <|-- Duck
    Animal <|-- Fish
    Animal <|-- Zebra
    Animal : +int age
    Animal : +String gender
    Animal: +isMammal()
    Animal: +mate()
    class Duck{
        +String beakColor
        +swim()
        +quack()
    }
    class Fish{
        -int sizeInFeet
        -canEat()
    }
    class Zebra{
        +bool is_wild
        +run()
    }
END

mermaid-ink($spec, format=>'md-image')    

image  not found

Scope

The first argument can be a list of pairs -- the corresponding Mermaid-js graph is produced. Here are the edges of directed graph:

my @edges = ['1' => '3', '3' => '1', '1' => '4', '2' => '3', '2' => '4', '3' => '4'];

[1 => 3 3 => 1 1 => 4 2 => 3 2 => 4 3 => 4]

Here is the corresponding mermaid-js image:

mermaid-ink(@edges, format=>'md-image')

image  not found

Flowchart

This flowchart summarizes the execution path of obtaining Mermaid images in a Markdown document:

References

WWW::MermaidInk v0.1.0

Get images corresponding to Mermaid-js specifications via the web Mermaid-ink interface of Mermaid-js.

Authors

  • Anton Antonov

License

Artistic-2.0

Dependencies

HTTP::Tiny:ver<0.2.5+>Base64:ver<0.1.0>

Test Dependencies

Provides

  • WWW::MermaidInk

The Camelia image is copyright 2009 by Larry Wall. "Raku" is trademark of the Yet Another Society. All rights reserved.