ML::ROCFunctions
ML::ROCFunctions
This repository has the code of a Raku package for Receiver Operating Characteristic (ROC) functions.
The ROC framework is used for analysis and tuning of binary classifiers, [Wk1]. (The classifiers are assumed to classify into a positive/true label or a negative/false label. )
For computational introduction to ROC utilization (in Mathematica) see the article "Basic example of using ROC with Linear regression", [AA1].
The examples below use the packages "Data::Generators", "Data::Reshapers", and "Data::Summarizers", described in the article "Introduction to data wrangling with Raku", [AA2].
Installation
Via zef-ecosystem:
zef install ML::ROCFunctions
From GitHub:
zef install https://github.com/antononcube/Raku-ML-ROCFunctions
Usage examples
Properties
Here are some retrieval functions:
use ML::ROCFunctions;
say roc-functions('properties');
say roc-functions('FPR');
# (FunctionInterpretations FunctionNames Functions Methods Properties)
# &FPR
Single ROC record
Here we generate a random "dataset" with columns "Actual" and "Predicted" that have the values "true" and "false" and show the summary:
use Data::Generators;
use Data::Summarizers;
my @dfRandomLabels = random-tabular-dataset(200, <Actual Predicted>, generators=>{Actual => <true false>, Predicted => <true false>});
records-summary(@dfRandomLabels)
# +--------------+--------------+
# | Predicted | Actual |
# +--------------+--------------+
# | false => 101 | true => 101 |
# | true => 99 | false => 99 |
# +--------------+--------------+
Here is a sample of the dataset:
use Data::Reshapers;
to-pretty-table(@dfRandomLabels.pick(6))
# +-----------+--------+
# | Predicted | Actual |
# +-----------+--------+
# | false | true |
# | false | true |
# | true | true |
# | true | false |
# | true | false |
# | false | false |
# +-----------+--------+
Here we make the corresponding ROC hash-map:
to-roc-hash('true', 'false', @dfRandomLabels.map({$_<Actual>}), @dfRandomLabels.map({$_<Predicted>}))
# {FalseNegative => 53, FalsePositive => 51, TrueNegative => 48, TruePositive => 48}
Multiple ROC records
Here we make random dataset with entries that associated with a certain threshold parameter with three unique values:
my @dfRandomLabels2 = random-tabular-dataset(200, <Threshold Actual Predicted>, generators=>{Threshold => (0.2, 0.4, 0.6), Actual => <true false>, Predicted => <true false>});
records-summary(@dfRandomLabels2)
# +--------------+--------------+-----------------+
# | Predicted | Actual | Threshold |
# +--------------+--------------+-----------------+
# | true => 107 | false => 106 | Min => 0.2 |
# | false => 93 | true => 94 | 1st-Qu => 0.2 |
# | | | Mean => 0.408 |
# | | | Median => 0.4 |
# | | | 3rd-Qu => 0.6 |
# | | | Max => 0.6 |
# +--------------+--------------+-----------------+
Remark: Threshold parameters are typically used while tuning Machine Learning (ML) classifiers.
Here we group the rows of the dataset by the unique threshold values:
my %groups = group-by(@dfRandomLabels2, 'Threshold');
records-summary(%groups)
# summary of 0.6 =>
# +-------------+-------------+---------------+
# | Actual | Predicted | Threshold |
# +-------------+-------------+---------------+
# | true => 38 | true => 40 | Min => 0.6 |
# | false => 36 | false => 34 | 1st-Qu => 0.6 |
# | | | Mean => 0.6 |
# | | | Median => 0.6 |
# | | | 3rd-Qu => 0.6 |
# | | | Max => 0.6 |
# +-------------+-------------+---------------+
# summary of 0.4 =>
# +-------------+---------------+-------------+
# | Predicted | Threshold | Actual |
# +-------------+---------------+-------------+
# | true => 31 | Min => 0.4 | false => 32 |
# | false => 29 | 1st-Qu => 0.4 | true => 28 |
# | | Mean => 0.4 | |
# | | Median => 0.4 | |
# | | 3rd-Qu => 0.4 | |
# | | Max => 0.4 | |
# +-------------+---------------+-------------+
# summary of 0.2 =>
# +---------------+-------------+-------------+
# | Threshold | Actual | Predicted |
# +---------------+-------------+-------------+
# | Min => 0.2 | false => 38 | true => 36 |
# | 1st-Qu => 0.2 | true => 28 | false => 30 |
# | Mean => 0.2 | | |
# | Median => 0.2 | | |
# | 3rd-Qu => 0.2 | | |
# | Max => 0.2 | | |
# +---------------+-------------+-------------+
Here we find and print the ROC records (hash-maps) for each unique threshold value:
my @rocs = do for %groups.kv -> $k, $v {
to-roc-hash('true', 'false', $v.map({$_<Actual>}), $v.map({$_<Predicted>}))
}
.say for @rocs;
# {FalseNegative => 20, FalsePositive => 22, TrueNegative => 14, TruePositive => 18}
# {FalseNegative => 8, FalsePositive => 11, TrueNegative => 21, TruePositive => 20}
# {FalseNegative => 14, FalsePositive => 22, TrueNegative => 16, TruePositive => 14}
Application of ROC functions
Here we define a list of ROC functions:
my @funcs = (&PPV, &NPV, &TPR, &ACC, &SPC, &MCC);
# [&PPV &NPV &TPR &ACC &SPC &MCC]
Here we apply each ROC function to each of the ROC records obtained above:
my @rocRes = @rocs.map( -> $r { @funcs.map({ $_.name => $_($r) }).Hash });
say to-pretty-table(@rocRes);
# +----------+----------+----------+----------+-----------+----------+
# | TPR | SPC | PPV | NPV | MCC | ACC |
# +----------+----------+----------+----------+-----------+----------+
# | 0.473684 | 0.388889 | 0.450000 | 0.411765 | -0.137924 | 0.432432 |
# | 0.714286 | 0.656250 | 0.645161 | 0.724138 | 0.371161 | 0.683333 |
# | 0.500000 | 0.421053 | 0.388889 | 0.533333 | -0.079195 | 0.454545 |
# +----------+----------+----------+----------+-----------+----------+
References
Articles
[Wk1] Wikipedia entry, "Receiver operating characteristic".
[AA1] Anton Antonov, "Basic example of using ROC with Linear regression", (2016), MathematicaForPrediction at WordPress.
[AA2] Anton Antonov, "Introduction to data wrangling with Raku", (2021), RakuForPrediction at WordPress.
Packages
[AAp1] Anton Antonov, ROCFunctions Mathematica package, (2016-2022), MathematicaForPrediction at GitHub/antononcube.
[AAp2] Anton Antonov, ROCFunctions R package, (2021), R-packages at GitHub/antononcube.
[AAp1] Anton Antonov,