DSL::Entity::MachineLearning
Raku DSL::Entity::MachineLearning
Raku grammar classes for Machine Learning (ML) entities (names.)
Installation
zef install https://github.com/antononcube/Raku-DSL-Entity-MachineLearning.git
Usage examples
use DSL::Entity::MachineLearning;
use DSL::Entity::MachineLearning::ResourceAccess;
my $pCOMMAND = DSL::Entity::MachineLearning::Grammar;
$pCOMMAND.set-resources(DSL::Entity::MachineLearning::resource-access-object());
say $pCOMMAND.parse('DecisionTree', rule => 'machine-learning-entity-command');
say $pCOMMAND.parse('gradient boosted trees', rule => 'machine-learning-entity-command');
say $pCOMMAND.parse('roc curve', rule => 'machine-learning-entity-command');
# ļ½¢DecisionTreeļ½£
# classifier-entity-command => ļ½¢DecisionTreeļ½£
# entity-classifier-name => ļ½¢DecisionTreeļ½£
# 0 => ļ½¢DecisionTreeļ½£
# word-value => ļ½¢DecisionTreeļ½£
# ļ½¢gradient boosted treesļ½£
# classifier-entity-command => ļ½¢gradient boosted treesļ½£
# entity-classifier-name => ļ½¢gradient boosted treesļ½£
# 0 => ļ½¢gradient boosted treesļ½£
# word-value => ļ½¢gradientļ½£
# word-value => ļ½¢boostedļ½£
# word-value => ļ½¢treesļ½£
# ļ½¢roc curveļ½£
# classifier-measurement-entity-command => ļ½¢roc curveļ½£
# entity-classifier-measurement-name => ļ½¢roc curveļ½£
# 0 => ļ½¢roc curveļ½£
# word-value => ļ½¢rocļ½£
# word-value => ļ½¢curveļ½£
Command line interface
The package provide as Command Line Interface (CLI) to its functionalities:
> ToMachineLearningEntityCode --help
# Usage:
# ToMachineLearningEntityCode <command> [--target=<Str>] [--user=<Str>] -- Conversion of (natural) DSL machine learning entity name into code.
# ToMachineLearningEntityCode <target> <command> [--user=<Str>] -- Both target and command as arguments.
#
# <command> natural language command (DSL commands)
# --target=<Str> target language/system/package (defaults to 'WL-System') [default: 'WL-System']
# --user=<Str> user identifier (defaults to '') [default: '']
# <target> Programming language.
Remark: (Currently) the CLI script always returns results in JSON format.
References
Classify and methods
[WRI1] Wolfram Research, Inc., Classify.
[WRI2] Wolfram Research, Inc., Machine Learning Methods.
Repositories
[AAr1] Anton Antonov, DSL::English::ClassificationWorkflows Raku package, (2020-2022), GitHub/antononcube.
[AAr2] Anton Antonov, DSL::Shared Raku package, (2020), GitHub/antononcube.
[AAr3] Anton Antonov, DSL::Entity::Geographics Raku package, (2021), GitHub/antononcube.
[AAr4] Anton Antonov, DSL::Entity::Jobs Raku package, (2021), GitHub/antononcube.
[AAr5] Anton Antonov, DSL::Entity::Foods Raku package, (2021), GitHub/antononcube.
[AAr6] Anton Antonov, DSL::Entity::Metadata Raku package, (2021), GitHub/antononcube.